The function of the piston is to form a combustion chamber with the cylinder head, withstand the gas pressure in the cylinder, and through the piston pin and connecting rod The force is transmitted to the crankshaft. Figure 3-9 shows the cross-section of the piston structure. The piston is mainly composed of four parts: piston top piston skirt piston pin seat 3 and piston ring groove 4.
First of all, the engine housing The shell of the engine plays the role of isolation and sealing from the outside world, absorbing various forces during the operation of the engine.
The engine is composed of two major mechanisms: crank connecting rod mechanism and gas distribution mechanism, as well as five major systems such as cooling, lubrication, ignition, fuel supply and start-up system.The main components include cylinder block, cylinder head, piston, piston pin, connecting rod, crankshaft, flywheel, etc. The inner surface of the cylinder is cylindrical.
1. The mesh distribution of German cars is also the reason why German cars are prone to burning oil. Because the cylinder piston of German cars adopts a mesh distribution, German cars can reduce wear and consumption during driving. Of course, the consequence of this is excessive oil consumption.
2. The main reason for burning engine oil is to use engine oil of poor quality or viscosity level that does not meet the requirements. The low quality level of the oil will lead to increased wear. In addition, the viscosity of the oil is too low.Or too high will cause poor engine lubrication, increase the wear of the piston ring and cylinder wall, reduce the sealing performance, and burn oil.
3. In addition, there are many reasons why German cars burn engine oil. Take Audi Volkswagen, a big oil burner, as an example.
4. The oil storage structure of the German car engine is different. It uses a design similar to a mesh structure. It can make the cylinder wall adsorb more oil, so that the piston ring is easy to form an oil film when moving, so it has a better effect on lubricating oil, but the loss of oil is also greater, so German cars will also burn oil.
The easiest way (for the new car): check whether the exhaust pipe smokes. If there is smoke, it is a two-stroke, and if there is smoke, it is a four-stroke.
The difference between two-stroke and four-stroke engines is simple from the appearance. It can be seen that the heat sink on the cylinder of the two-stroke engine is relatively large, the screws are relatively small, and the cylinder block is obviously longer than the cylinder head. The heat sink on the four-stroke engine cylinder is relatively small, with more screws, and the cylinder block and the cylinder head are almost the same length, and also It's just that the cylinder head is relatively long.
Look at the exhaust gas---The fuel of the two-stroke motorcycle is not burned for the second time. The utilization rate is relatively low, the combustion is insufficient, and its lubricating oil is mixed with gasoline, so the phenomenon of smoke can be seen, especially when driving at high speed.
Customized market entry reports-APP, download it now, new users will receive a novice gift pack.
The function of the piston is to form a combustion chamber with the cylinder head, withstand the gas pressure in the cylinder, and through the piston pin and connecting rod The force is transmitted to the crankshaft. Figure 3-9 shows the cross-section of the piston structure. The piston is mainly composed of four parts: piston top piston skirt piston pin seat 3 and piston ring groove 4.
First of all, the engine housing The shell of the engine plays the role of isolation and sealing from the outside world, absorbing various forces during the operation of the engine.
The engine is composed of two major mechanisms: crank connecting rod mechanism and gas distribution mechanism, as well as five major systems such as cooling, lubrication, ignition, fuel supply and start-up system.The main components include cylinder block, cylinder head, piston, piston pin, connecting rod, crankshaft, flywheel, etc. The inner surface of the cylinder is cylindrical.
1. The mesh distribution of German cars is also the reason why German cars are prone to burning oil. Because the cylinder piston of German cars adopts a mesh distribution, German cars can reduce wear and consumption during driving. Of course, the consequence of this is excessive oil consumption.
2. The main reason for burning engine oil is to use engine oil of poor quality or viscosity level that does not meet the requirements. The low quality level of the oil will lead to increased wear. In addition, the viscosity of the oil is too low.Or too high will cause poor engine lubrication, increase the wear of the piston ring and cylinder wall, reduce the sealing performance, and burn oil.
3. In addition, there are many reasons why German cars burn engine oil. Take Audi Volkswagen, a big oil burner, as an example.
4. The oil storage structure of the German car engine is different. It uses a design similar to a mesh structure. It can make the cylinder wall adsorb more oil, so that the piston ring is easy to form an oil film when moving, so it has a better effect on lubricating oil, but the loss of oil is also greater, so German cars will also burn oil.
The easiest way (for the new car): check whether the exhaust pipe smokes. If there is smoke, it is a two-stroke, and if there is smoke, it is a four-stroke.
The difference between two-stroke and four-stroke engines is simple from the appearance. It can be seen that the heat sink on the cylinder of the two-stroke engine is relatively large, the screws are relatively small, and the cylinder block is obviously longer than the cylinder head. The heat sink on the four-stroke engine cylinder is relatively small, with more screws, and the cylinder block and the cylinder head are almost the same length, and also It's just that the cylinder head is relatively long.
Look at the exhaust gas---The fuel of the two-stroke motorcycle is not burned for the second time. The utilization rate is relatively low, the combustion is insufficient, and its lubricating oil is mixed with gasoline, so the phenomenon of smoke can be seen, especially when driving at high speed.
How to facilitate cross-border returns
author: 2024-12-24 02:15HS code-based inventory forecasting
author: 2024-12-24 01:25Asia trade corridors HS code mapping
author: 2024-12-24 01:00Advanced export forecasting models
author: 2024-12-24 02:46Canada HS code classification assistance
author: 2024-12-24 01:40Mineral fuels HS code data analysis
author: 2024-12-24 01:18Real-time shipment data alerts
author: 2024-12-24 01:13Leather goods HS code classification
author: 2024-12-24 00:48869.59MB
Check287.38MB
Check472.71MB
Check612.27MB
Check267.78MB
Check771.82MB
Check545.66MB
Check976.31MB
Check211.75MB
Check159.54MB
Check235.72MB
Check289.22MB
Check144.78MB
Check314.33MB
Check139.57MB
Check898.77MB
Check118.47MB
Check753.36MB
Check815.35MB
Check431.66MB
Check159.65MB
Check242.14MB
Check348.72MB
Check646.59MB
Check357.92MB
Check265.39MB
Check195.16MB
Check861.96MB
Check481.83MB
Check444.83MB
Check962.45MB
Check655.81MB
Check884.16MB
Check494.88MB
Check973.26MB
Check787.95MB
CheckScan to install
Customized market entry reports to discover more
Netizen comments More
823 HS code-driven route-to-market planning
2024-12-24 03:09 recommend
1539 HS code-based forecasting for exports
2024-12-24 02:51 recommend
97 HS code filters for bulk commodities
2024-12-24 02:48 recommend
1384 Inland freight HS code applicability
2024-12-24 02:37 recommend
284 Trade data solutions for retail
2024-12-24 02:09 recommend